13,065 research outputs found

    Excitonic model of track registration of energetic heavy ions in insulators

    Get PDF
    The consequence of generation of dense electronic excitation along the paths of energetic heavy ions is discussed, emphasizing the fates of electron-hole pairs. It is pointed out that a substantial part of the energy imparted to electron-hole pairs in the materials in which excitons are self-trapped is converted directly to defect formation energy but do not contribute to heating. However, the thermal spike model can be an appropriate macroscopic model of the track registration of the materials in which excitons are self-trapped, because energy deposited to the material remains along the ion paths. The energy imparted to electron-hole pairs is diffused away from the ion paths in the materials in which excitons are not self-trapped. This explains the reason why the critical stopping power for track registration is higher in these materials. The difficulty for application of the thermal spike model to these materials is pointed out and it is suggested that nominal defects in densely excited region nucleate fragmental tracks. (C) 1998 Published by Elsevier Science B.V. All rights reserved

    INITIAL PRODUCTION OF DEFECTS IN ALKALI-HALIDES - F AND H CENTER PRODUCTION BY NON-RADIATIVE DECAY OF SELF-TRAPPED EXCITON

    Get PDF
    Radiation damage in KCl can be produced by the decay of a self-trapped exciton into an F centre and an H centre. The authors present calculations of the energies of the states involved for various stages in the evolution of the damage. These lead to important conclusions about the very rapid damage process, and support strongly Itoh and Saidoh's suggestion (1973) that damage proceeds through an excited hole state. The results also help in understanding the prompt decay of F and H pairs at low temperatures, the thermal annihilation of F and H centres, the effects of optical excitation of the self-trapped exciton, and some of the trends within the alkali halides. The calculations use a self-consistent semi-empirical molecular-orbital method. A large cluster of ions is used (either 42 or 57 ions) plus long-range Madelung terms. The ion positions were obtained from separate lattice-relaxation calculations with the HADES code. The choice of CNDO parameters and the adequacy of the method were checked by a number of separate predictions

    Making tracks in metals

    Get PDF
    Swift heavy ions lose energy primarily by inelastic electronic scattering and, above an energy threshold, electronic losses result in damage to the lattice. Such high energy radiation is beyond the range of validity of traditional cascade simulations, and predictive damage calculations are challenging. We use a novel methodology, which combines molecular dynamics with a consistent treatment of electronic energy transport and redistribution to the lattice, to model how swift heavy ions form damage tracks. We consider a range of material parameters (electron-phonon coupling strength, thermal conductivity and electronic specific heat) and show how these affect the maximum lattice temperature reached and the extent of residual damage. Our analysis also suggests that fission tracks may form in alloys of archaeological interest

    Making tracks: electronic excitation roles in forming swift heavy ion tracks

    Get PDF
    Swift heavy ions cause material modification along their tracks, changes primarily due to their very dense electronic excitation. The available data for threshold stopping powers indicate two main classes of materials. Group I, with threshold stopping powers above about 10 keV nm(-1), includes some metals, crystalline semiconductors and a few insulators. Group II, with lower thresholds, comprises many insulators, amorphous materials and high T-c oxide superconductors. We show that the systematic differences in behaviour result from different coupling of the dense excited electrons, holes and excitons to atomic (ionic) motions, and the consequent lattice relaxation. The coupling strength of excitons and charge carriers with the lattice is crucial. For group II, the mechanism appears to be the self- trapped exciton model of Itoh and Stoneham ( 1998 Nucl. Instrum. Methods Phys. Res. B 146 362): the local structural changes occur roughly when the exciton concentration exceeds the number of lattice sites. In materials of group I, excitons are not self- trapped and structural change requires excitation of a substantial fraction of bonding electrons, which induces spontaneous lattice expansion within a few hundred femtoseconds, as recently observed by laser- induced time- resolved x- ray diffraction of semiconductors. Our analysis addresses a number of experimental results, such as track morphology, the efficiency of track registration and the ratios of the threshold stopping power of various materials

    Ion structure factors and electron transport in dense Coulomb plasmas

    Full text link
    The dynamical structure factor of a Coulomb crystal of ions is calculated at arbitrary temperature below the melting point taking into account multi-phonon processes in the harmonic approximation. In a strongly coupled Coulomb ion liquid, the static structure factor is split into two parts, a Bragg-diffraction-like one, describing incipient long-range order structures, and an inelastic part corresponding to thermal ion density fluctuations. It is assumed that the diffractionlike scattering does not lead to the electron relaxation in the liquid phase. This assumption, together with the inclusion of multi-phonon processes in the crystalline phase, eliminates large discontinuities of the transport coefficients (jumps of the thermal and electric conductivities, as well as shear viscosity, reported previously) at a melting point.Comment: 4 pages, 2 figures, REVTeX using epsf.sty. Phys. Rev. Lett., in pres
    • ā€¦
    corecore